y Practice Problems

Chapter-wise Sheets

Date	:	
------	---	--

Start Time :

End Time :

CHEMISTRY (CC17)

SYLLABUS : Electrochemistry

Max. Marks: 180 Marking Scheme : + 4 for correct & (-1) for incorrect Time : 60 min.

🕀 www.studentbro.in

INSTRUCTIONS : This Daily Practice Problem Sheet contains 45 MCQ's. For each question only one option is correct. Darken the correct circle/ bubble in the Response Grid provided on each page.

- A gas X at 1 atm is bubbled through a solution containing a 1. mixture of 1 M Y- and 1 M Z- at 25°C. If the reduction potential of Z > Y > X, then,
 - (a) Y will oxidize X and not Z
 - (b) Y will oxidize Z and not X
 - (c) Y will oxidize both X and Z
 - (d) Y will reduce both X and Z
- 2. On the basis of the following E° values, the strongest oxidizing agent is:
 - $[Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{3-} + e^{-}; E^{\circ} = -0.35 V$
 - $Fe^{2+} \rightarrow Fe^{3+} + e^{-};$ $E^{\circ} = -0.77 V$ (b) Fc²⁺
 - (a) $[Fc(CN)_6]^{4}$ (c) Fc^{3+}
 - (d) $[Fc(CN)_6]^{3-}$
- 3. Resistance of a conductivity cell filled with a solution of an electrolyte of concentration 0.1 M is 100Ω . The conductivity of this solution is 1.29 S m⁻¹. Resistance of the same cell when filled with 0.2 M of the same solution is 520Ω . The molar conductivity of 0.2 M solution of electrolyte will be

(a) $1.24 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$ (b) $12.4 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$ (c) $124 \times 10^{-4} \,\mathrm{S} \,\mathrm{m}^2 \,\mathrm{mol}^{-1}$ (d) $1240 \times 10^{-4} \,\mathrm{S} \,\mathrm{m}^2 \,\mathrm{mol}^{-1}$

For the electrochemical cell, $M \mid M^+ \parallel X^- \mid X$, 4.

> $E^{o}_{M^{+}/M} = 0.44$ V and $E^{o}_{X/X^{-}} = 0.33$ V. From this data one can deduce that

(a) $M + X \rightarrow M^{+} + X^{-}$ is the spontaneous reaction

- (b) $M^+ + X^- \rightarrow M + X$ is the spontaneous reaction

(c)
$$E_{cell} = 0.77V$$

(d)
$$E_{cell} = -0.77V$$

5. What will be the emf for the given cell $Pt | H_{2}(P_{1}) | H^{+}(aq) | | H_{2}(P_{2}) | Pt$

(a)
$$\frac{RT}{F}\log_e \frac{P_1}{P_2}$$
 (b) $\frac{RT}{2F}\log_e \frac{P_1}{P_2}$
(c) $\frac{RT}{F}\log_e \frac{P_2}{P_1}$ (d) None of these

3. abcd 4. (a)b)C)d 5. **RESPONSE GRID** 1. (a)b)©(d) 2. abcd Space for Rough Work

CLICK HERE

Get More Learning Materials Here :

- DPP/ CC17

C-66

7.

What is the standard cell potential E° for an electrochemical 6. cell in which the following reaction takes place spontaneously ?

$$Cl_2(g) + 2Br^- \rightarrow Br_2(aq) + 2Cl^-, \Delta G^\circ = -50.6 \text{ kJ}$$

- (a) 1.2V (b) 0.53 V
- (c) 0.26V (d) -0.53 V The unit of equivalent conductivity is
- (a) ohmcin
- (b) $ohm^{-1} cm^2 (g equivalent)^{-1}$
- (c) ohm cm^2 (g equivalent)
- (d) Scm⁻²
- 8. The variation of equivalent conductance of strong electrolyte with (concentration)^{3/2} is represented by

Consider the following cell reaction: 9.

 $2Fc(s) + O_2(g) + 4H^+(aq) \rightarrow$

$$2Fe^{2+}(aq) + 2H_2O(l); E^\circ = 1.67 V$$

At $[Fe^{2+}] = 10^{-3} M$, $p(O_2) = 0.1$ atm and pH = 3, the cell potential at 25°C is

(a)	1.47V	(b)	1.77V
1 >	10714		

- (c) 1.87V (d) 1.57V
- 10. The electrical properties and their respective SI units are given below. Identify the wrongly matched pair. SI unit

Electrical property

- $S m^{-1}$ (a) Specific conductance S
- (b) Conductance
- S m² g equiv⁻¹ (c) Equivalent conductance
- (d) Cell constant
- 11. Limiting molar conductivity of NH₄OH

$$\left(i.e., \Lambda_{in(NH_4OH)}^{o}\right)$$
 is equal to :

(a) $\Lambda_{in(NH_{4}Cl)+}^{\circ} \Lambda_{in(NaCl)-}^{\circ} \Lambda_{m(NaCll)}^{\circ}$

(b) $\Lambda_{1n(NaOH)}^{\circ} + \Lambda_{m(NaCI)}^{\circ} - \Lambda_{m(NIL_{1}CI)}^{\circ}$

(c)
$$\Lambda_{m(NH_4 \oplus H)}^{\circ} + \Lambda_{m(NH_4 Cl)}^{\circ} - \Lambda_{m(HCl)}^{\circ}$$

- (d) $\Lambda_{m(NH_4Cl)}^{\circ} + \Lambda_{m(NaOll}^{\circ} \Lambda_{m(NaCl)}^{\circ}$
- 12. A lead storage battery containing 5.0 L of (1N) H₂SO₄

solution is operated for 9.65×10^5 s with a steady current of 100 mA. Assuming volume of the solution remaining constant, normality of H2SO4 will

(a) remain unchanged (b) increases by 0.20

13. The electrode potential $E_{(Zn^{2+}/Zn)}$ of a zinc electrode at 25°C with an aqueous solution of 0.1 M ZnSO₄ is

$$\begin{bmatrix} e_{(Zn^{2+}/Zn)}^{\circ} = -0.76 \text{ V. Assume } \frac{2.303 \text{ RT}}{\text{F}} = 0.06 \text{ at } 298 \text{ K} \end{bmatrix}.$$

(a) +0.73 (b) -0.79
(c) -0.82 (d) -0.70

14. A battery is constructed of Cr and $Na_2Cr_2O_7$. The unbalanced chemical equation when such a battery discharges is following:

 $Na_2Cr_2O_7 + Cr + H^+ \rightarrow Cr^{3+} + H_2O + Na^+$

If one Faraday of electricity is passed through the battery during the charging, the number of moles of Cr³⁺ removed from the solution is

(a)
$$\frac{4}{3}$$
 (b) $\frac{1}{3}$
(c) $\frac{3}{3}$ (d) $\frac{2}{3}$

- 15. Which of the following reaction is possible at anode?
 - (a) $2 \operatorname{Cr}^{3+} + 7H_2O \rightarrow \operatorname{Cr}_2O_7^{2-} + 14H^*$

(b)
$$F_2 \rightarrow 2F$$

- (c) $(1/2) O_2 + 2H^+ \rightarrow H_2 O$
- (d) none of these.
- 16. In a hydrogen-oxygen fuel cell, combustion of hydrogen occurs to
 - (a) produce high purity water
 - (b) create potential difference between two electrodes
 - (c) generte heat
 - (d) remove adsorbed oxygen from electron surfaces

Space for Rough Work .

DPP/CC17

17. E° for the cell,

 $Zn | Zn^{2+}(aq) | | Cu^{2+}(aq) | Cu \text{ is } 1.10 \text{ V at } 25^{\circ}\text{C}$. The equilibrium constant for the cell reaction

 $Zn + Cu^{2+}(aq) \implies Cu + Zn^{2+}(aq)$ is of the order of (b) 10³⁷ (a) 10^{-37} (c) 10⁻¹⁷ (d) 10¹⁷

18. The correct order of $E^{\circ}_{M^{2+}/M}$ values with negative sign for the four successive elements Cr, Mn, Fe and Co is (a) Mn>Cr>Fe>Co (b) Cr<Fe>Mn>Co

(d) Cr > Mn > Fe > Co(c) Fe > Mn > Cr > Co

19. For a spontaneous reaction the ΔG , equilibrium constant

(K) and E_{Cell}^{o} will be respectively

- (a) -ve, >1, -ve(b) $-ve, \le l, -ve$ (c) +ve, >l, -ve(d) -ve, >1, +ve
- 20. If the E^{\bullet}_{cell} for a given reaction has a negative value, then which of the following gives the correct relationships for the values of ΔG° and K_{eq} ?
- (a) $\Delta G^{\circ} > 0; K_{eq} > 1$ (b) $\Delta G^{\circ} < 0; K_{eq} > 1$ (c) $\Delta G^{\circ} < 0; K_{eq} < 1$ (d) $\Delta G^{\circ} > 0; K_{eq} < 1$ 21. Which of the following expressions correctly represents the equivalent conductance at infinite dilution of $Al_2(SO_4)_3$,

Given that $\Lambda^{\circ}_{AI^{3+}}$ and $\Lambda^{\circ}_{S \oplus^{2-}_4}$ are the equivalent conductances at infinite dilution of the respective ions?

(a)
$$\frac{1}{3}\Lambda_{Al^{3+}}^{\circ} + \frac{1}{2}\Lambda_{SO_4^{2-}}^{\circ}$$
 (b) $2\Lambda_{Al^{3+}}^{\circ} + 3\Lambda_{SO_4^{2-}}^{\circ}$
(c) $\Lambda_{Al^{3+}}^{\circ} + \Lambda_{SO_4^{2-}}^{\circ}$ (d) $\left(\Lambda_{Al^{3+}}^{\circ} + \Lambda_{SO_4^{2-}}^{\circ}\right) \times 6$

22. Given: $E_{Cr^{3+}/Cr}^{o} = -0.74 \text{ V}; E_{MnO_{4}^{-}/Mn^{2+}}^{o} = 1.51 \text{ V}$

 $E^{o}_{Cr_{2}O_{7}^{2-}/Cr^{3+}} = 1.33 \text{ V}; E^{o}_{Cl/Cl^{-}} = 1.36 \text{ V}$

Based on the data given above, strongest oxidising agent will be :

- (b) Cr3+ (a) Cl (c) Mn^{2+} (d) MnO_{4}
- 23. The standard electrode potentials $(E_{M^+/M}^o)$ of four metals

A, B, C and D arc - 1.2 V, 0.6 V, 0.85 V and - 0.76 V, respectively. The sequence of deposition of metals on 24. Which of the following statements is correct? (a) Oxidation number of oxygen in KO₂ is+1 (b) The specific conductance of an electrolyte solution decreases with increase in dilution (c) Sn²⁺ oxidiscs Fc³⁺ (d) $Zn/ZnSO_4$ is a reference electrode 25. Molar ionic conductivities of a two-bivalent electrolytes x^{2+} and y^{2-} are 57 and 73 respectively. The molar conductivity of the solution formed by them will be (b) $65 \,\mathrm{S} \,\mathrm{cm}^2 \,\mathrm{mol}^{-1}$ (a) $130 \,\mathrm{S} \,\mathrm{cm}^2 \,\mathrm{mol}^{-1}$ (c) $260S \text{ cm}^2 \text{ mol}^{-1}$ (d) $187 \,\mathrm{S} \,\mathrm{cm}^2 \,\mathrm{mol}^{-1}$ 26. Thecell, $Z_n |Z_n^{2+}(1 \text{ M})| |Cu^{2+}(1 \text{ M})| Cu (E^{\circ}_{cell} = 1.10 \text{ V})$ was allowed to be completely discharged at 298 K. The relative concentration of Zn^{2+} to $Cu^{2+}\left(\frac{[Zn^{2+}]}{[Cu^{2+}]}\right)$ is (a) 9.65×10^4 (b) antilog(24.08) (d) 10^{37.3}. (c) 37.3 27. Which of the following statements is true for an electrochemical cell? (a) Reduction occurs at H, electrode (b) H, is cathode and Cu is anode (c) H, is anode and Cu is cathode (d) Oxidation occurs at Cu electrode 28. Given $Fc^{3+}(aq) + e^{-} \rightarrow Fc^{2+}(aq); E^{o} = +0.77 V$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s); E^{\circ} = -1.66 V$ $Br_2(aq) + 2e^- \rightarrow 2Br^-; E^\circ = +1.09 V$ Considering the electrode potentials, which of the following represents the correct order of reducing power? (a) $Fe^{2+} < Al < Br^{-}$ (b) $Br < Fe^{2t} < Al$

applying potential is:

(a) A,C,B,D

(c) C,B,D,A

(c) $A | < Br < Fc^{2+}$ (d) $Al < Fe^{2+} < Br$ 29. Standard free energies of formation (in kJ/mol) at 298 K are -237.2, -394.4 and -8.2 for H2O(1), CO2(g) and pentane (g), respectively. The value E^{\bullet}_{cell} for the pentane-oxygen fuel cell is :

(a) 1.968V (b) 2.0968V (c) 1.0968V (d) 0.0968V

30. Given $E^{\circ}_{Cr}^{3+}/Cr = -0.72 \text{ V}, E^{\circ}_{Fe}^{2+}/Fe} = -0.42 \text{ V}$. The potential for the cell $Cr[Cr^{3+}(0.1M)]$ Fe²⁺ (0.01 M) Fe is (a) 0.26V (b) 0.336V (c) -0.339V (d) 0.26V

Response Grid	17.abcd 22.abcd 27.abcd	18.a b C d 23.a b C d 28.a b C d	19. a b C d 24. a b C d 29. a b C d	20.abCd 25.abCd 30.abCd	21. (a)b)C)(d) 26. (a)b)C)(d)

C-67

(b) B,D,C,A

(d) D,A,B,C

Get More Learning Materials Here :

DPP/CC17

C-68

- 31. Electrolysis of dilute aqueous NaCl solution was carried out by passing 10 milli ampere current. The time required to liberate 0.01 mole of H_2 gas at the cathode is
 - $(1 \text{ Faraday} = 96500 \text{ C mol}^{-1})$
 - (a) $9.65 \times 10^4 \text{ sec}$ (b) $19.3 \times 10^4 \text{ sec}$
 - (c) $28.95 \times 10^4 \sec$ (d) $38.6 \times 10^4 \sec$
- **32.** Which of the following reaction occurs at the cathode during the charging of lead storage battery?
 - (a) $l^{b}b^{2+} + 2e^{-} \longrightarrow l^{b}b$
 - (b) $Pb^{2+} + SO_4^{2-} \longrightarrow PbSO_4$
 - (c) $Pb \longrightarrow Pb^{2+} + 2c^{-}$
 - (d) $PbSO_4 + 2H_2O \longrightarrow 2PbO_2 + 4H^+ + SO_4^{2-} + 2e^-$
- 33. Conductance of 0.1 M KCl (conductivit $y = X \text{ ohm}^{-1} \text{ cm}^{-1}$)

filled in a conductivity cell is $Y \text{ ohm}^{-1}$. If the conductance

of 0.1 MNaOHfilled in the same cell is $Z \text{ ohm}^{-1}$, the molar conductance of NaOH will be

(a)
$$10^{3} \frac{XZ}{Y}$$
 (b) $10^{4} \frac{XZ}{Y}$
(d) $10 \frac{XZ}{Y}$ (d) $0.1 \frac{XZ}{Y}$

- 34. How much charge is required, when 1 mole of $Cr_2O_7^{2-1}$ reduce to form 1 mole of Cr^{3+} ? (a) 6F (b) 3F
 - (c) 1F (d) 2F
- 35. In electrolysis of dilute H_2SO_4 using platinum electrodes (a) H_2 is evolved at cathode
 - (b) NH, is produced at anode
 - (c) Cl₂ is obtained at cathode
 - (d) O_2 is produced
- 36. The resistance of 0.1 N solution of a salt is found to be 2.5×10^3 ohm. The equivalent conductance of the solution is (cell constant = 1.15 cm⁻¹)
 - (a) 4.6 (b) 5.6 (c) 6.6 (d) 7.6
- **37.** The highest electrical conductivity of the following aqueous solutions is of
 - (a) 0.1 M difluoroacetic acid
 - (b) 0.1 M fluoroacetic acid
 - (c) 0.1 M chloroacctic acid
 - (d) 0.1 M aceticacid
- **38.** When during electrolysis of a solution of AgNO₃ 9650 coulombs of charge pass through the electroplating bath,

the mass of silver deposited on the cathode will be (a) 10.8 g (b) 21.6 g (c) 108 g (d) 1.08 g

- **39.** The reduction potential of hydrogen half-cell will be negative if:
 - (a) $p(H_2) = 1$ atm and $[H^*] = 2.0$ M
 - (b) $p(H_{2}) = l \text{ atmand } [H^{+}] = 1.0 \text{ M}$
 - (c) $p(H_2) = 2 \text{ atm and } [H^+] = 1.0 \text{ M}$
 - (d) $p(H_2) = 2 \text{ atm and } [H^*] = 2.0 \text{ M}$
- **40.** When electric current is passed through acidified water, 112 mL of hydrogen gas at STP collected at the cathode in 965 seconds. The current passed in amperes is
 - (a) 1.0 (b) 0.5 (c) 0.1 (d) 2.0
- 41. An electrolytic cell contains a solution of Ag_2SO_4 and has platinum electrodes. A current is passed until 1.6 g of O_2 has been liberated at anode. The amount of silver deposited at cathode would be
 - (a) 107.88g (b) 1.6g
 - (c) 0.8g (d) 21.60g
- 42. Which of the following pair(s) is/are incorrectly matched?
 (i) R (resistance) ohm (Ω)
 - (ii) ρ (resistivity) ohm metre (Ω m)
 - (iii) G (conductance) seimens or ohm (S)
 - (iv) κ (conductivity) scimens metre⁻¹ (Sm⁻¹)
 - (a) (i), (ii) and (iii) (b) (ii) and (iii)
 - (c) (i), (ii) and (iv) (d) (iii) only
- 43. One Faraday of electricity is passed through molten Al_2O_3 , aqueous solution of $CuSO_4$ and molten NaCl taken in three different electrolytic cells connected in series. The mole ratio of Al, Cu and Na deposited at the respective cathode is (a) 2:3:6 (b) 6:2:3
 - (c) 6:3:2 (d) 1:2:3
- 44. If p is the resistance in ohm of a centimeter cube, generally called the specific resistance of the substance constituting the conductor, the resistance r of the layer containing "a" cubes is given by

(a)
$$\frac{1}{r} = \frac{1}{\rho} + \frac{1}{\rho} + \dots$$
 (b) $\frac{1}{r} = \frac{1}{\rho a} + \frac{1}{\rho a} + \dots$

(c) $r = a / \rho$ (d) $r = \rho + \rho + \dots$ 45. Which of the following statements is wrong?

- (a) Electrolysis of an aqueous sodium hydroxide solution liberates H₂ gas at the cathode and O₂ gas at the anode.
- (b) Electrolysis of dil. H₂SO₄ liberates H₂(g) at cathode and O₂ (g) at the anode
- (c) $\Delta G^{\circ} = nFE^{\circ}$ for a spontaneous reaction

(d)
$$E=E^{\bullet} - \frac{0.059}{n} \log Q$$
, Where $Q = reaction quotient$

Response Grid	31.@bcd 36.@bcd 41.@bcd	32.abcd 37.abcd 42.abcd	33.abCd 38.abCd 43.abCd	34.abcd 39.abcd 44.abcd	35. (a)b)C)d) 40. (a)b)C)d) 45. (a)b)C)d)
Space for Rough Work					

Space for Rough Work

DAILY PRACTICE PROBLEMS

CHEMISTRY SOLUTIONS

DPP/CC17

- (a) The given order of reduction potentials (or tendencies) is Z > Y > X. A spontaneous reaction will have the following characteristics Z reduced and Y oxidised Z reduced and X oxidised Y reduced and X oxidised Hence, Y will oxidise X and not Z.
- (c) From the given data we find Fe³⁺ is strongest oxidising agent. More the positive value of E[•], more is the tendency to get oxidized. Thus correct option is (c).

3. **(b)** R = 100
$$\Omega$$
, $\kappa = \frac{1}{R} \left(\frac{l}{A} \right)$,
 $\frac{l}{A}$ (cell constant) = 1.29 × 100 m⁻¹
Given, R = 520 Ω , C = 0.2 M,
 μ (molar conductivity) = ?

 $\mu = \kappa \times V$ (κ can be calculated as $\kappa = \frac{1}{R} \left(\frac{l}{A} \right)$

now cell constant is known.)

Hence,

5.

$$\mu = \frac{1}{520} \times 129 \times \frac{1000}{0.2} \times 10^{-6} \text{ m}^3$$
$$= 12.4 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$$

- 4. (b) For, $M^+ + X^- \longrightarrow M + X$, $E_{cell}^o = 0.44 0.33 = 0.11V$ is positive, hence reaction is spontaneous.
 - (b) RHS: $2H^+ + 2e^- \longrightarrow H_2(P_2)$ LHS: $H_2(P_1) \longrightarrow 2H^+ + 2e^$ overall reaction: $H_2(P_1) \longrightarrow H_2(P_2)$

$$\mathbf{E} \bullet \mathbf{E} \bullet \bullet \frac{\mathbf{R}\mathbf{T}}{\mathbf{n}\mathbf{F}} \ln \frac{\mathbf{P}_2}{\mathbf{P}_1} \bullet \mathbf{0} \bullet \frac{\mathbf{R}\mathbf{T}}{\mathbf{n}\mathbf{F}} \ln \frac{\mathbf{P}_2}{\mathbf{P}_1} \bullet \frac{\mathbf{R}\mathbf{T}}{\mathbf{n}\mathbf{F}} \ln \frac{\mathbf{P}_1}{\mathbf{P}_2}$$

6. (c)
$$\Delta G^{\circ} = -nFE^{\circ}; E^{\circ} = \frac{-\Delta G^{\circ}}{nF};$$

 $E^{\circ} = \frac{-(-50.61J)}{2 \times 96500 \times 10^{-3}} = 0.26 \text{ V}$

- 7. **(b)** $Ohm^{-1} cm^2 (g cq)^{-1}$
- 8. (a) In case of equivalent conductance of strong electrolyte there is little increase with dilution.
- 9. (d) Here n=4, and $[H^4]=10^{-3}(aspH=3)$ Applying Nernst equation

$$E = E^{\bullet} - \frac{0.059}{n} \log \frac{[Fe^{2+}]^2}{[H^+]^4 (p_{\bullet_2})}$$
$$= 1.67 - \frac{0.059}{4} \log \frac{(10^{-3})^2}{(10^{-3})^4 \times 0.1}$$

•
$$1.67 \cdot \frac{0.059}{4} \log 10^7 = 1.67 - 0.103 = 1.567 \text{V}$$

10. (d) Cell constant = l/aUnit=m/m²=m⁻¹.

11. (d)
$$\Lambda^{\circ}_{m(NH_4Cl)} = \Lambda^{\circ}_{m_NH_4^+} + \Lambda^{\circ}_{m_{Cl}^-}$$

 $\Lambda^{\circ}_{m(NaOH)} = \Lambda^{\circ}_{m_Na^+} + \Lambda^{\circ}_{m_{OH}^-}$

$$\Lambda_{m(NaCl)}^{\circ} = \Lambda_{mNa^{+}}^{\circ} + \Lambda_{mCl^{-}}^{\circ}$$

$$\therefore \Lambda_{1n}^{o}(NH_{4}^{+})^{+}\Lambda_{n}^{o}(OII^{-})$$

$$=\Lambda_{m}^{o}\left(\mathrm{NH}_{4}^{+}\right)+\Lambda_{m}^{o}\left(\mathrm{Cl}^{-}\right)+\Lambda_{m}^{o}\left(\mathrm{Na}^{+}\right)$$

$$+\Lambda_{m\left(OH^{-}\right)}^{\circ}-\left[\Lambda_{m\left(Na^{+}\right)}^{\circ}+\Lambda_{m\left(CI^{-}\right)}^{\circ}\right]$$

$$\Lambda^{\circ}_{\mathfrak{m}(\mathsf{NH}_4\mathsf{OH})} = \Lambda^{\circ}_{\mathfrak{m}(\mathsf{NH}_4\mathsf{CI})} + \Lambda^{\circ}_{\mathfrak{m}(\mathsf{NaOII})} - \Lambda^{\circ}_{\mathfrak{m}(\mathsf{NaCI})}$$

12. (d) $Pb+SO_4^{2-} \longrightarrow PbSO_4 + 2e^ PbO_2 + 4H^+ + SO_4^{2-} + 2e^- \longrightarrow PbSO_4 + 2H_2O$

> $Pb+PbO_2+2H_2SO_4 \longrightarrow 2PbSO_4+2H_2O$ The reaction indicates that 2 moles of H_2SO_4 corresponds to 2 × 96500 C and 2 moles $H_2SO_4 \equiv 4$ equiv. of H_2SO_4 .

 2×96500 C consumed 4 equiv. of H₂SO₄

and
$$100 \times 10^{-3} \times 9.65 \times 10^{5}$$
 C consumed

$$= \frac{4 \times 10^{-1} \times 9.05 \times 10^{-1}}{2 \times 96500} = 2 \text{ equiv. H}_2 \text{SO}_4$$

$$\therefore$$
 Decrease in normality = $\frac{2}{5} = 0.40$

13. (b) For
$$Zn^{2+} \rightarrow Zn$$

$$E_{Zn^{2+}/Zn} = E_{Zn^{2+}/Zn}^{\circ} - \frac{2.303 \text{ RT}}{\text{nF}} \log \frac{[\text{Zn}]}{[\text{Zn}^{2+}]}$$
$$= -0.76 - \frac{0.06}{2} \log \frac{1}{[0.1]} = -0.76 - 0.03$$
$$E_{Zn^{2+}/Zn} = -0.79 \text{ V}$$

Get More Learning Materials Here :

CLICK HERE

🕀 www.studentbro.in

s-49

DPP/CC17 -

- 14. (c) Reduction half reaction : $Cr_2O_7^{2-} + 6e^- + 14H^+ \longrightarrow 2Cr^{3+} + 7H_2O$ Oxidation half reaction : $Cr \longrightarrow Cr^{3+} + 3e^-$ Overall reaction : $Cr_2O_7^{2-} + Cr + 14H^+ + 3e^- \longrightarrow 3Cr^{3+} + 7H_2O$ 3F of electricity = 3 moles of Cr^{3+} 1F of electricity = $\frac{3}{3}$ moles of Cr^{3+} 15. (a) $2Cr^{3+} + 7H_2O \rightarrow Cr_2O_7^{2-} + 14H^+$
- 5. (a) $2Cr^{-1} + 7H_2O \rightarrow Cr_2O_7 + 14H^{-1}$ O.S. of Cr changes from +3 to +6 by loss of electrons. At anode oxidation takes place.
- 16. (b) In $H_2 O_2$ fuel cell, the combustion of H_2 occurs to create potential difference between the two electrodes.

17. **(b)**
$$E_{cell}^{o} = \frac{0.059}{2} \log K_{C} \text{ or } \frac{1.10 \times 2}{0.059} = \log K_{C}$$

 $\therefore K_{C} = 1.9 \times 10^{37}$

18. (a) The value of $E_{M^{2*}/M}^{o}$ for given metal ions are

$$E^{o}_{Mn^{2^{*}}/Mn} \cdot 1.18 \text{ V},$$

 $E^{o}_{Cr^{2^{*}}/Cr} \cdot 0.9 \text{ V},$
 $E^{\bullet}_{Fe^{2^{*}}/Fe} \cdot 0.44 \text{ V} \text{ and } E^{o}_{Co^{2^{*}}/Co} \cdot 0.28 \text{ V}.$

The correct order of $E_{M^{2^*}/M}^{o}$ values without considering negative sign would be $Mn^{2^+} > Cr^{2^+} > Fc^{2^+} > Co^{2^+}.$

19. (d) For spontaneous reaction ΔG should be negative. Equilibrium constant should be more than one $(\Delta G = -2.303 \text{ RT} \log K_c, 1 \text{ fK}_c = 1 \text{ then}$ $\Delta G = 0; 1 \text{ fK}_c < 1$

then $\Delta G = +ve$). Again $\Delta G = -nFE_{cell}^o$.

 E_{ceil}^{\bullet} must be +ve to have ΔG -ve.

20. (d) Standard Gibbs free energy is given as
$$\Delta G^{\circ} = -nE^{\bullet}F$$

If $E^{\bullet}_{cell} < 0$ i.e., $-vc$
 $\Delta G^{\circ} > 0$
Further $\Delta G^{\circ} = -RT \ln K_{eq}$
 $\therefore \Delta G^{\bullet} > 0$ and $K_{eq} < 0$

(c) Conductivity of an electrolyte depends on the mobility of ions and concentration of ions. The motion of an ionic species in an electric field is retarded by the oppositely charged ions due to their interionic attraction. On dilution, concentration of electrolyte decreases and the retarding influence of oppositely charged ions decreases. Therefore mobility of ions increases.

- 22. (d) Higher the value of standard reduction potential, stronger is the oxidising agent, hence MnO_4^- is the strongest oxidising agent.
- 23. (c) As the value of reduction potential decreases the reducing power increases i.e.
 C < B < D < A
- (0.85). (0.6). (-0.76) (-1.2) 24. (b) Specific conductance decreases with dilution.
- 25. (a) $\Lambda_{\rm in}^{\infty} = 57 + 73 = 130 \, {\rm Scm}^2 {\rm mol}^{-1}$
- 26. (d) $E_{cell} = 0$; when cell is completely discharged.

$$E_{ccll} = E_{ccll}^{o} - \frac{0.059}{2} \log \left(\frac{\left[Zn^{2+} \right]}{\left[Cu^{2+} \right]} \right)$$

or $0 = 1.1 - \frac{0.059}{2} \log \left(\frac{\left[Zn^{2+} \right]}{\left[Cu^{2+} \right]} \right)$
 $\log \left(\frac{\left[Zn^{2+} \right]}{\left[Cu^{2+} \right]} \right) = \frac{2 \times 1.1}{0.059} = 37.3$
 $\therefore \left(\frac{\left[Zn^{2+} \right]}{\left[Cu^{2+} \right]} \right) = 10^{37.3}$

- 27. (c) Reduction potential of Cu is more than H_2 .
- 28. (d) Reducing character decreases down the series. Hence the correct order is
 A1<Fc²⁺<Br~
- 29. (c) Writing the equation for pentane-oxygen fuel cell at respective electrodes and overall reaction, we get At Anode:

$$C_{5}H_{12} + 10H_{2}O \rightarrow 5CO_{2} + 32H^{+} + 32e^{-}$$
(pentane)

At Cathode:

$$\frac{8O_2 + 32H^+ + 32e^- \rightarrow 16H_2O}{Overall:C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O}$$

Calculation of ΔG° for the above reaction $\Delta G^{\bullet} = [5 \times (-394.4) + 6 \times (-237.2)] - [-8.2]$ = -1972.0 - 1423.2 + 8.2 = -3387.0 kJ = -3387000 Joules.From the equation we find n = 32

Using the relation, $\Delta G^{\circ} = -nFE_{cell}^{\circ}$ and substituting various values, we get

 $-3387000 = -32 \times 96500 \times E_{cell}^{\circ}$ (F=96500C)

or
$$E_{cell}^{\bullet} = \frac{3387000}{32 \times 96500}$$

Get More Learning Materials Here : 📕

DPP/CC17

$$=\frac{3387000}{3088000} \text{ or } \frac{3387}{3088} \text{ V}=1.0968 \text{ V}$$

Thus option (c) is correct answer.

30. (d) From the given representation of the cell, E_{cell} can be found as follows.

$$E_{cell} = \left(E_{Fe^{2^{+}}/Fe}^{o} - E_{Cr^{3^{+}}/Cr}^{o}\right) - \frac{0.059}{6}\log\frac{\left[Cr^{3^{+}}\right]^{2}}{\left[Fe^{2^{+}}\right]^{3}}$$

[Nernst -Equ.]

39.

ľ

$$= -0.42 - (-0.72) - \frac{0.059}{6} \log \frac{(0.1)^2}{(0.01)^3}$$
$$= -0.42 + 0.72 - \frac{0.059}{6} \log \frac{0.1 \times 0.1}{0.01 \times 0.01 \times 0.01}$$

$$= 0.3 - \frac{0.059}{6} \log \frac{10^{-2}}{10^{-6}} = 0.3 - \frac{0.059}{6} \times 4$$

= 0.30 - 0.0393 = 0.26 VHence option (d) is correct answer.

31. (b)
$$H_2O \Longrightarrow H' \cdot OH'$$

 $H' \cdot c' \cdot \cdot \frac{1}{2}H_2$

 \therefore 0.5 mole of H₂ is liberated by 1 F = 96500 C 0.01 mole of H₂ will be liberated by

$$= \frac{96500}{0.5} \cdot 0.01 = 1930C$$

Q=1×1
t • $\frac{Q}{I} \cdot \frac{1930 C}{10 \cdot 10^{\circ 3} A} \cdot 19.3 \cdot 10^{4} scc$

32. (d)

33. (b) Conductivity (X) =conductance $(c) \times$ cell constant

$$\therefore \text{ Cell constant} = \frac{X}{Y}$$
Conductivity of NaOH = $\frac{X}{Y}$.Z
$$\Delta m (\text{NaOH}) = \frac{X}{Y} \cdot Z \times \frac{1000}{0.1} = \frac{XZ}{Y} \cdot 10^4$$

- 34. (b) Total of 6 electrons are required to form 2 moles of Cr^{3+} therefore to form 1 mole of Cr^{3+} 3F of charge is required.
- 35. (a) When platinum electrodes are dipped in dilute solution H_2SO_4 than H_2 is evolved at cathode.
- 36. (a) Specific conductance = Conductance \times Cell constant

$$k = \frac{1}{2.5 \times 10^{3}} \times 1.15;$$

$$A_{eq} = \frac{1.15}{2.5 \times 10^{3}} \times \frac{1000}{0.1} = 4.6$$

37. (a) Thus difluoro acctic acid being strongest acid will furnish maximum number of ions showing highest electrical conductivity. The decreasing acidic strength

of the carboxylic acides given is difluoro acetic acid > fluoro acetic acid > cbloro acetic acid > acetic acid.

38. (a) No. of moles of silver
$$=\frac{9650}{96500}=\frac{1}{10}$$
 moles

$$\therefore$$
 Mass of silver deposited = $\frac{1}{10} \times 108 = 10.8$ g

(c)
$$H^+ + e^- \longrightarrow \frac{1}{2} H_2$$

 $E = E^0 - \frac{0.059}{1} \log \frac{[P(H_2)]^{1/2}}{[H^+]}$

Now if
$$p_{H_2} = 2 \text{ atm and } [H^+] = IM$$

then E =
$$0 - \frac{0.059}{1}\log\frac{2^{1/2}}{1} = \frac{-0.059}{2}\log 2$$

40. (a)
$$112 \text{ mLof H}_2 \text{a1STP} = \frac{2 \times 112 \text{g}}{22400}$$

(Since 22400 mL at STP = M.wt)

A mount deposited =
$$\frac{\text{Eq.wt} \times i \times t}{96500}$$

$$\frac{2 \times 112}{22400} = \frac{1 \times 965 \times i}{96500};$$

i=l amp

41. (d)
$$\frac{W_A}{E_A} = \frac{W_B}{E_B}; \frac{1.6}{8} = \frac{Wt. \text{ of } Ag}{108}$$

 \therefore Wt of Ag = 21.6 g

- **42.** (d) Correct matching for pair (iii) will be [G (conductance) siemens or ohm⁻¹(S).]
- 43. (a) The charge carried by 1 mole of electrons is one faraday. Thus for a reaction

$$M^{n+} + nc^{-} \longrightarrow M$$

$$nF = 1 \text{ moleof } M$$

$$Ai^{3+} + 3e^{-} \longrightarrow Ai$$

$$IF = 1/3 \text{ mole}$$

$$Cu^{2+} + 2c^{-} \longrightarrow Cu$$

$$IF = 1/2 \text{ mole}$$

$$If = 1/2 \text{ mole}$$

$$Na^+ + e^- \longrightarrow Na$$

The mole ratio of Al, Cu and Na deposited at the respective cathode is $\frac{1}{3}:\frac{1}{2}:1$ or 2:3:6.

🕀 www.studentbro.in

44. (a) Reciprocal of resistance is conductance. We can add the conductance and not resistance.

Hence
$$\frac{1}{r} = \frac{1}{\rho} + \frac{1}{\rho} + \dots$$

CLICK HERE

45. (c) The correct relation is $\Delta G^{\circ} = -nFE^{\circ}$

Get More Learning Materials Here :